THE SPACES H(osp(1|2),M) FOR SOME WEIGHT MODULES M
نویسنده
چکیده
We entirely compute the cohomology for a natural and large class of osp(1|2) modules M . We study the restriction to the sl(2) cohomology of M and apply our results to the module M = Dλ,μ of differential operators on the super circle, acting on densities.
منابع مشابه
Tame Loci of Generalized Local Cohomology Modules
Let $M$ and $N$ be two finitely generated graded modules over a standard graded Noetherian ring $R=bigoplus_{ngeq 0} R_n$. In this paper we show that if $R_{0}$ is semi-local of dimension $leq 2$ then, the set $hbox{Ass}_{R_{0}}Big(H^{i}_{R_{+}}(M,N)_{n}Big)$ is asymptotically stable for $nrightarrow -infty$ in some special cases. Also, we study the torsion-freeness of graded generalized local ...
متن کاملOn the Associated Primes of the generalized $d$-Local Cohomology Modules
The first part of the paper is concerned to relationship between the sets of associated primes of the generalized $d$-local cohomology modules and the ordinary generalized local cohomology modules. Assume that $R$ is a commutative Noetherian local ring, $M$ and $N$ are finitely generated $R$-modules and $d, t$ are two integers. We prove that $Ass H^t_d(M,N)=bigcup_{Iin Phi} Ass H^t_I(M,N)...
متن کامل0 Classification of Infinite Dimensional Weight Modules over the Lie
We give a complete classification of infinite dimensional indecomposable weight modules over the Lie superalgebra sl(2/1). §1. Introduction Among the basic-classical Lie superalgebras classified by Kac [3], the lowest dimensional of these is the Lie superalgebra B(0, 1) or osp(1, 2), while the lowest dimensional of these which has an isotropic odd simple root is the Lie superalgebra A(1, 0) or ...
متن کاملZARISKI-LIKE SPACES OF CERTAIN MODULES
Let $R$ be a commutative ring with identity and $M$ be a unitary$R$-module. The primary-like spectrum $Spec_L(M)$ is thecollection of all primary-like submodules $Q$ such that $M/Q$ is aprimeful $R$-module. Here, $M$ is defined to be RSP if $rad(Q)$ isa prime submodule for all $Qin Spec_L(M)$. This class containsthe family of multiplication modules properly. The purpose of thispaper is to intro...
متن کاملThe Artinian property of certain graded generalized local chohomology modules
Let $R=oplus_{nin Bbb N_0}R_n$ be a Noetherian homogeneous ring with local base ring $(R_0,frak{m}_0)$, $M$ and $N$ two finitely generated graded $R$-modules. Let $t$ be the least integer such that $H^t_{R_+}(M,N)$ is not minimax. We prove that $H^j_{frak{m}_0R}(H^t_{R_+}(M,N))$ is Artinian for $j=0,1$. Also, we show that if ${rm cd}(R_{+},M,N)=2$ and $tin Bbb N_0$, then $H^t_{frak{m}_0R}(H^2_...
متن کامل